
 

JavaScript 

 

CAC Noida is an ISO 9001:2015 certified training center with professional experience that dates back to 2005. 

The vision is to provide professional education merging corporate culture globally to the youth through 

technology resourcing and knowledge consulting with emerging technologies. Quality assurance parameters 

for each stage of training and development are ensured at all levels. The operating office is solely based Noida 

(U.P) India. 

CAC Noida is the well-known JavaScript training center in Noida with high tech infrastructure and friendly 

environment. We provide hands on practical knowledge and full job assistance with basic as well as advanced 

level 

CAC Noida is one of the best JavaScript training institute in Noida with 100% placement record. CAC Noida 

has well defined courses and modules with training sessions for developers. At CAC Noida, JavaScript 

training is conducted by specialist Trainers having experience of more than 10+ years. 

CAC Noida is well-equipped JavaScript training center in Noida and we offer job oriented JavaScript training 

program keeping an eye on industry requirements and future prospects. Each and every one who is part of 

“CAC Noida” is important to us. Every student has the freedom to discuss and learn. We always take care that 

right student choose right course. 

JavaScript is the one of high in demand course today and CAC Noida provides practical exposure to all the 

concepts, contents are well-structured to meet the industry requirements. 

We are confident that JavaScript training we deliver is at a fantastic standard and are constantly striving to 

improve and become even better. We believe that JavaScript training should be well planned, well prepared, fit 

for purpose and delivered by trainers who are motivational and inspirational, trainers who can make learning 

interesting and will make a difference to your people and your organization. 

Training Offer for JavaScript 

Introduction JavaScript 

 More code, less words 

 Exhaustive code and repetition 

 Color-coding conventions 

 Code examples 

 

JavaScript Objects 

 Creating objects 

 JavaScript constructors create and return object instances 

 The native JavaScript object constructors 

 User-defined/non-native object constructor functions 

 Instantiating constructors using the new operator 

 Creating shorthand or literal values from constructors 



 

 Primitive (aka simple) values 

 The primitive values null, undefined, “string”, 10, true, and false are not Objects 

 How primitive values are stored/copied in JavaScript 

 Primitive values are equal by value 

 The string, number, and Boolean primitive values act like objects when used like Objects 

 Complex (aka composite) values 

 How complex values are stored/copied in JavaScript 

 Complex objects are equal by reference 

 Complex objects have dynamic properties 

 The typeof operator used on primitive and complex values 

 Dynamic properties allow for mutable objects 

 All constructor instances have constructor properties that point to their constructor 

 Function 

 Verify that an object is an instance of a particular constructor function 

 An instance created from a constructor can have its own independent properties (aka 

instance properties) 

 The semantics of “JavaScript objects” and “Object() objects” 

 

Working with Objects and Properties 

 Complex objects can contain most of the JavaScript values as properties 

 Encapsulating complex objects in a programmatically beneficial way Getting, setting, and updating an 

object’s properties using dot notation or bracket Notation 

 Deleting object properties 

 How references to object properties are resolved 

 Using hasOwnProperty to verify that an object property is not from the prototype Chain 

 Checking if an object contains a given property using the in operator 

 Enumerate (loop over) an object’s properties using the for in loop 

 Enhancing and extending objects with Underscore.js 

 

String() 

 Conceptual overview of using the String() object 

 String() parameters 

 String() properties and methods 

 String object instance properties and methods 

Number() 

 Conceptual overview of using the Number() object 



 

 Integers and floating-point numbers 

 Number() parameters 

 Number() properties 

 Number object instance properties and methods 

Boolean() 

 Conceptual overview of using the Boolean() object 

 Boolean() parameters 

 Boolean() properties and methods 

 Boolean object instance properties and methods 

 Non-primitive false Boolean objects convert to true 

 Certain things are false, everything else is true 

Working with Primitive String, Number, and Boolean Values 

 Primitive/literal values are converted to objects when properties are accessed 

 You should typically use primitive string, number, and Boolean values 

Null 

 Conceptual overview of using the null value 

 typeof returns null values as “object” 

Undefined 

 Conceptual overview of the undefined value 

 JavaScript ECMA-262 Edition 3 (and later) declares the undefined variable in the global scope 

The Head/Global Object 

o Conceptual overview of the head object 

o Global functions contained within the head object 

o The head object vs. global properties and global variables 

o Referring to the head object 

o The head object is implied and typically not referenced explicitly 

Object() 

 Conceptual overview of using Object() objects 

 Object() parameters 

 Object() properties and methods 

 Object() object instance properties and methods 

 Creating Object() objects using “object literals” 

 All objects inherit from Object.prototype 

Function() 



 

 Conceptual overview of using Function() objects 

 Function() parameters 

 Function() properties and methods 

 Function object instance properties and methods 

 Functions always return a value 

 Functions are first-class citizens (not just syntax, but values) 

 Passing parameters to a function 

 this and arguments values are available to all functions 

 The arguments.callee property 

 The function instance length property and arguments.length 

 Redefining function parameters 

 Return a function before it is done (i.e. cancel function execution) 

 Defining a function (statement, expression, or constructor) 

 Invoking a function (function, method, constructor, or call() and apply()) 

 Anonymous functions 

 Self-invoking function expression 

 Self-invoking anonymous function statements 

 Functions can be nested 

 Passing functions to functions and returning functions from functions 

 Invoking function statements before they are defined (aka function hoisting) 

 A function can call itself (aka recursion) 

The this Keyword 

 Conceptual overview of this and how it refers to objects 

 How is the value of this determined? 

 The this keyword refers to the head object in nested functions 

 Working around the nested function issue by leveraging the scope chain 

 Controlling the value of this using call() or apply() 

 Using the this keyword inside a user-defined constructor function 

 The keyword this inside a prototype method refers to a constructor instance 

Scope and Closures 

 Conceptual overview of JavaScript scope 

 JavaScript does not have block scope 

 Use var inside of functions to declare variables and avoid scope gotchas 

 The scope chain (aka lexical scoping) 

 The scope chain lookup returns the first found value 

 Scope is determined during function definition, not invocation 



 

 Closures are caused by the scope chain 

Function Prototype Property 

 Conceptual overview of the prototype chain 

 Why care about the prototype property? 

 Prototype is standard on all Function() instances 

 The default prototype property is an Object() object 

Custom Library 

Create Own MVC Framework 

DOM/CSS Scripting 

 Introduction to the Document Object Model (DOM) 

 Using the getElementById method 

 Modifying Page Content with the DOM 

 Manipulating CSS using JavaScript 

 Programmatic Access to CSS 

Common Applications 

o Form Validation and Testing 

o Working with Regular Expressions 

o User Interaction 

o Local Form Processing 

o Object Detection 

o Creating New Windows 

o Adding Content to a Window 

 

 
Contact Info. 

 
CAC – NOIDA 

Address:- D-55, Sector-7, Noida 

Phone:- 0120-4269814 

Mobile: +91 9212091244 

Email:- info@cacnoida.com 

Website:- http://cacnoida.com/ 

 

mailto:info@cacnoida.com
http://cacnoida.com/

	JavaScript
	Training Offer for JavaScript
	Introduction JavaScript
	JavaScript Objects
	Working with Objects and Properties
	String()
	Number()
	Boolean()
	Working with Primitive String, Number, and Boolean Values
	Null
	Undefined
	The Head/Global Object
	Object()
	Function()
	The this Keyword
	Scope and Closures
	Function Prototype Property
	Custom Library
	Create Own MVC Framework
	DOM/CSS Scripting
	Common Applications


